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Abstract— Recent years have witnessed the great success of
the applications of graph convolutional networks (GCNs) in
various scenarios. However, due to the challenging over-smoothing
and over-squashing problems, the ability of GCNs to model
information from long-distance nodes has been largely limited.
One solution is to aggregate features from different hops of
neighborhoods with a linear combination of them followed by
a shallow feature transformation. However, we demonstrate that
those methods can only achieve a tradeoff between tackling those
two problems. To this end, in this article, we design a simple
yet effective graph convolution (GC), named maximization-based
GC (MGC). Instead of using the linear combination, MGC
applies an elementwise maximizing operation for exploiting all
possible powers of the normalized adjacent matrix to construct
a GC operation. As evidenced by theoretical and empirical
analysis, MGC can effectively handle the above two problems.
Besides, an efficient approximated model with a linear complexity
is developed to extend MGC for large-scale graph learning.
To demonstrate the effectiveness, scalability, and efficiency of
our models, extensive experiments have been conducted on
various benchmark datasets. In particular, our models achieve
competitive performance with lower complexity, even on large
graphs with more than 100M nodes. Our code is available at
https://github.com/SmilesDZgk/MGC.

Index Terms— Graph convolutional network (GCN), node
classification, over-smoothing, over-squashing.

I. INTRODUCTION

S AN advanced neural approach for modeling com-
plex graph-structured data, graph convolutional network
(GCN) [29], [66] and its variants have obtained great success
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in various application scenarios, including social media [2],
[21], traffic prediction [5], [33], biology [32], [70], recom-
mender systems [16], [47], [48], [65], language modeling [12],
[54], [79], computer vision [51], [63], knowledge discovery
and diagnosis [6], [45], [71], [72], and even talent manage-
ment [26], [46], [56], [76], [77], [78]. To learn the graph rep-
resentations, GCNs apply the fixed linear feature propagation
between each node and its neighbors with graph convolution
(GC) operation (i.e., the normalized adjacent matrix) followed
by a trainable nonlinear feature transformation.

While considerable efforts have been made to improve
the performance of GCNs, there are still some long-standing
challenges that cannot be neglected. The most well-known
problem is named over-smoothing [36], which means the
node representations will become indistinguishable and even
converge to the same value as the number of layers increases.
As a result, most of the recent GCN models tend to use
fairly shallow settings (e.g., vanilla GCN [29] achieves their
best performance with two layers), which limits their ability
to reach the high-order neighbors. One solution for that is
to widen the receptive field of feature propagation while
limiting the depth of transformation networks to reduce the
negative effect caused by deep neural networks [83]. Along
this line, a series of works focus on the design of the GC
operation and specify it as the linear combination of powers
of the normalized adjacent matrix with different weighting
coefficients, such as SGC [64], S?GC [83], and approximate
PPNP (APPNP) [30]. Furthermore, graph diffusion convolu-
tion (GDC) [31] provides a unified framework to design those
GC operations by generalizing the graph diffusion process. All
of them can deepen the layers of GCNs without performance
degradation to some extent.

However, we will demonstrate that all GDC-based models
have to abandon the long-distance information to some extent
for relieving over-smoothing. In other words, these models
can only achieve a tradeoff between tackling over-smoothing
and another critical problem in GCN:s, i.e., over-squashing [1].
It suggests that GCNs fail to handle the long-distance depen-
dencies between distant nodes even though they are included
in the receptive field. The rationale behind is that GCNs
absorb incoming edges equally in each layer [1], where
the contribution of each distant neighbor would be mostly
submerged among the exponentially growing receptive field
as the number of layers increases. Most of the previous works
to address over-squashing are based on the adjustment of
graph structure by adding extra nodes or virtual edges [1],
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Fig. 1.
stage, respectively.

[14], [52], [58]. However, the correctness and rationality of
all involved new nodes or edges cannot be guaranteed, which
may include unnecessary computation and noise information.

To this end, in this article, instead of using the linear com-
bination like that in GDC-based models, we propose a simple
yet effective GC, i.e., maximization-based GC (MGC). Specif-
ically, we design the whole pipeline as in Fig. 1. Instead of
conducting feature propagation and transformation alternately,
we propose to decouple them into two separate parts. Our
MGC operation is involved in the preprocessing stage to prop-
agate and fuse features among different nodes. Subsequently,
during the training stage, a simple multilayer perceptron
(MLP) layer is trained using a combination of both the original
and processed node features as input, with the node label as the
supervision. In particular, as shown in the below box, MGC
applies an elementwise maximizing operation for exploiting all
possible powers of the normalized adjacent matrix to construct
the GC operation. We demonstrate that our MGC operation
can alleviate over-squashing better than any GDC operation
theoretically and can also avoid over-smoothing with empirical
evidence. In addition, to reduce the high complexity for
large scalable graph learning, we develop the approximated
approach, i.e., approximated MGC (AMGC), with a complex-
ity that is linear in the number of edges. To demonstrate
the effectiveness, scalability, and efficiency, extensive empir-
ical analysis has been conducted on 14 node classification
benchmark datasets, including large-scale datasets, such as
Ogbn-Papers100M and MAG240M [20]. The results demon-
strate that our models achieve competitive performance in
capturing both the neighbor and long-distance dependency
with lower complexity.

The major contributions of this article are listed as
follows.

1) We demonstrate that all GDC-based models, which

aggregate features from different hops of neighborhoods
with a linear combination of them, can only achieve
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Overview of the proposed MGC pipeline, where the feature propagation and transformation are decoupled into the preprocessing stage and training

a tradeoff between tackling over-smoothing and over-
squashing problems.

2) We propose a simple yet effective GC based on
maximization operation, i.e., MGC, to handle both
over-smoothing and over-squashing problems. Also,
an efficient approximated approach to MGC with a linear
complexity has been designed.

3) Extensive experiments on 14 node classification bench-
mark datasets have been conducted to demonstrate the
effectiveness, scalability, and efficiency of our models.

The remainder of this article is structured as follows.

In Section II, we briefly introduce the necessary background
knowledge about the various GCNs. In Section III, we will
point out the tradeoff of all GDC-based models on tack-
ling over-smoothing and over-squashing problems. Technical
details of our proposed model, i.e., MGC, will be specified in
Section IV with effectiveness and efficiency analysis. In par-
ticular, an approximated approach, i.e., AMGC, will also be
designed. Then, we evaluate the effectiveness, scalability, and
efficiency of our models on 13 public benchmark datasets
in Section V, with some further discussions on experimental
results. In Section VI, we conclude this article.

II. PRELIMINARIES

Here, we introduce the necessary notations and review the
previous related GCN variants.

Formally, given an undirected graph G = (V, &) (G is
assumed to be connected for convenience), where ) represents
the vertex set consisting of n nodes, i.e., {v,...,v,}, and
& represents the edge set with size of m. We denote the
A € R™" as the adjacent matrix and D = diag(d,, ..., d,)
as the diagonal degree matrix, respectively. Here, d; is equal
to the row sum of the adjacency matrix, i.e., d; = >, ; Ajj.
Then, the adjacent matrix with self-loops can be denoted
by A = A + I, with the corresponding diagonal degree
matrix D = D + I, where [, is an identity matrix. A is
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the normalized adjacency matrix with added self-loops, i.e.,
D Y2AD~'2. Meanwhile, each node is represented by a
b-dimensional vector x; € R?, while the integrated feature
matrix is denoted by X = [x|,...,x,]T € R"*’. Besides,
each node is assigned by one of ¢ classes. The label vector y;
of each node is one-hot vectors, i.e., y; € {0, 1}°. The node
classification task aims to predict the unlabeled node set based
on the labeled node set.

A. Vanila GCN [29]

Different from MLPs, which only model the feature trans-
formation independently on each instance, a K-layer GCN
also propagates the representation of each node among its
neighbors at each layer. This procedure can be defined as
follows:

H&+D — U(AH(k)W(k)) (1)

where H%*D and H® are the smoothed feature matrix at
layer k + 1 and k, respectively. H® is set as the input feature
matrix, X. W® is a layer-specific trainable weight matrix, and
o (+) is a nonlinear activation function, such as ReLLU.

B. SGC [64]

A GCN layer averages the hidden representations among
one-hop neighbors, which implies that K-layer GCN can
capture feature information from all nodes in the K-hop
neighbors. By hypothesizing that the majority of the benefit
of GCN models arises from the local averaging at each GCN
layer not the nonlinearity between layers, SGC simplifies the
K-layer GCN by applying the Kth power of the normalization
adjacent matrix A to model the feature propagation and feeds
output feature to a single linear model before the prediction
function

Y = Softmax(AX XW). )

Following the main idea to simplifying GCNs into linear
models, S’GC [83] further replaces A% with 1 /K Zle A* to
alleviate the over-smoothing problem while maintaining the
high scalability and efficiency.

C. APPNP [30]

Inspired by the personalized PageRank [43] algorithm,
Klicpera et al. [30] proposed to derive a PPR-based convo-
lution, PPNP, by decoupling the feature transformation and
propagation

H=afl,—(1—a)A) HO 3)

where o € (0, 1) represents the teleport probability in PPR
to balance the needs of preserving locality and leveraging
the information from a distant neighbor and H® = f(X)
is the output of a two-layer fully connected neural network
on the feature matrix X. To avoid the complex calculation for
the inverse of matrix A, APPNP is proposed with a truncated
power iteration on the K-hop neighbors

H*Y = (1 —a)AH® 4+ aH©O. 4)

D. Graph Diffusion Convolution [31]

A generalized graph diffusion is a linear combination of all
possible powers of normalized adjacent matrix {Ak},fil, called
GDC operation

S = fA* (5)
k=1

where the weighting coefficients 6 are constrained by that
> 016 = 1 to ensure the above equation converges. The S
itself or its normalization S = Ds_l/ s Dy 12 Wwith the diagonal
degree matrix Dj; is used as the convolution operation to model
the feature propagation before the feature transformation, i.e.,
SX. Note that 6 can be a trainable parameter or fixed with
prior knowledge.

Indeed, by assuming the nonlinearity in GCNs is not criti-
cal [64], many works can be regarded as the expansion of GDC
with different choices of 6;, where we call them as GDC-based
models.

1) Vanila GCN is with 6, =1 if k =1, else 0.

2) SGC is with 6y =1 if k = K, else 0.

3) S2GC is with 6, = 1/K if 0 < k < K, else 0.

4) APPNP is with 6y = a(1 — ), if 0 < k < K, else 0.

III. TRADEOFF BETWEEN TACKLING OVER-SMOOTHING
AND OVER-SQUASHING

Although GCNs have been applied successively to deal
with broad classes of systems of relations and interactions,
there are still some long-standing challenges that cannot be
neglected [1], [22], [67]. Here, we first discuss the most pop-
ular two problems, i.e., over-smoothing and over-squashing,
which essentially limit GCNs for modeling information from
long-distance nodes. Then, we point out that the GDC-based
models can only achieve a tradeoff between tackling those two
problems.

A. Over-Smoothing

Over-smoothing is the most well-known problem in GCNs,
which suggests that the node representations are inclined to
be indistinguishable as the number of feature propagation
steps increases. Li et al. [36] explain the hidden rationale is
that most eigenvalues of the normalized adjacent matrix Ak
will converge to 0 as k increases to infinity. Taking SGC as
an example, the output representation X* after an infinite
number of feature propagation will become

X = A®X = UA®U"X (6)

where A = diag{\i, ..., \,} is a diagonal matrix of the eigen-
values of A and U € R™" is a unitary matrix that consists
of the eigenvectors. Noting that all eigenvalues Aj,..., A,
fall to (—1, 1] and only the max one \; = 1. Therefore,
we have A® = diag{l,...,0} and A® = U U; with U, ; =
((d; + DY2/(2m + n)'/?). In other words, each row vector
of A® has the same direction, and each element A;’j" only
relates to the node degrees of target nodes and source nodes
without the full graph structure information, which results
indistinguishable feature vectors in X (.
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Fig. 2. Left part shows the illustrative curve of Af.‘. between two nodes v;

and v; as k increases in the Zachary Karate dataset. In particular, the source
node v; is randomly selected and fixed, while the target node v; varies across
all nodes. The lines that Ak has not achieved the maximum before k = 45 are
highlighted by orange color The right part shows the proportion of elements

Af‘ in the matrix Af that reach the maximum on different k values, where
1 < k < 45 and zero elements have been omitted.

B. Over-Squashing

Over-squashing is another critical problem in GCNs and
attracting more attention recently [1], [58], which suggests that
the node representations fail to handle long-distance depen-
dency between distant nodes. GCNs need to have at least K
layers to receive information from the nodes beyond a distance
of K. However, as the number of layers increases, GCNs
must compress information from the exponentially growing
receptive field into fixed-length node vectors [1]. Because
GCNs absorb incoming edges equally in each layer, the contri-
bution of each distant node would be mostly ignored compared
with that of neighbors. Most of the previous works to tackle
over-squashing are based on the adjustment of graph structure
by adding “supersource” nodes [52] or virtual edges [14],
[58] to connect nodes with distant distance and even connect
all nodes to capture global information [1]. Here, we aim to
avoid over-squashing without modifying the graph structure,
to decrease unnecessary computation and noise information.

C. Tradeoff Dilemma

Following [58] and [68], we assess the over-squashing effect
between node v; and its distant neighbor v; in GDC-based
models by measuring how much a change in the input feature
of v; affects the representation of v; with the Jacobian, i.e.,

A(SX); ad .
98X _ S = Z@k(Ak)ij, )
0X; P

Intuitively, to strengthen the connection between nodes v;
and v;, we need to assign more weight to (Ak),-j with
larger value. However, if the distance (shortest path distance)
between them is d, we have (Ak),- ;i = 0 Vk < d. Therefore,
we must enlarge several values of 6, where k > d at least.
In addition, the strongest connection between two distant
nodes with the largest (Ak )ij rarely occurs around k = d. Take
the small graph, Zachary Karate dataset [73] with 34 nodes,
as an example. We show the curve of Afj between one
node v; and each of other nodes j € {1,2,...,34} as k
increases in Fig. 2(a), where each curve corresponds to one
node pair (v;, v;). We can find that the value (Ak)i ; of several
node pairs is larger with larger k (colored by orange) and
even monotonically increases as k increases, especially for
long-distance node pairs (v;, v;) with (A"),-J- =0fork=1, 2,
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or 3. In addition, we further show the proportion of elements
in A that reach the largest on different k values, where
1 < k < 45. We find that a considerable proportion of Afj
reaches the largest on the last power. As a result, to alleviate
the over-squashing and enhance the relation between long-
distance nodes, we must assign more weight 6, with large k.

Following [80], we assess the degree of over-smoothing by
measuring the distance between GDC operation S in (5) and
over-smoothing stationarity A> with Frobenius norm. Then,
we can derive

2

oo
|5 —A%|% = |ul D ahr — A~ JuT
k=0 F
00 2
< IUIF| D (6cA* — A%) | 11U
k=0 F
n 0] 2 n oo
=2 DA D 0N ) =’ D DN )

i=2 \k=0 i=2

where the first line is based on the decomposition A=UAUT
and the second line is based on the property of the Frobenius
norm ||-||r. Noting that |)\;| < 1,Vi > 1, and /\ff approximates
exponentially to 0, we need to assign more weight 6; with
smaller k to avoid the left term to be too small, which causes
the over-smoothing problem.

In summary, based on the above analysis, we observe the
opposite requirements to assign the weighting coefficients
0 on handling the over-squashing and over-smoothing
problems in GDC-based models. Therefore, we argue that
any GDC-based models with the GC operation defined in (5)
can only achieve a tradeoff of tackling with over-smoothing
and over-squashing problems at most.

IV. MAXIMIZATION-BASED GC

Here, we first introduce the proposed GC operation, i.e.,
MGC, with a detailed discussion about its effect on handling
over-squashing and over-smoothing. Then, the design of the
whole MGC pipeline is described. Finally, the efficiency anal-
ysis is conducted, where an efficient approximated approach
is developed to reduce complexity.

A. MGC Operation

Similar to GDC operations, our goal is to find a suitable
feature propagation matrix M € R™" as the GC operation
with consideration on powers of the normalized adjacent
matrix A. Inspired by that in (7), we assume the Jacobian
0(MX);/0X; = M;; as the measure of the influence on the
output feature of node v; from the input feature of node v;.
We have an intuitive idea that any other nodes, including
both the short-distance and long-distance neighbors, should
all affect the nodes v; at most. Therefore, instead of the linear
combination in the GDC-based models, we propose to use the
maximization operation among the set {Ak}f:l to construct
the GC operation M, called MGC operation, that is,

M = max,le{/ik} 9)
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where max{-} is an elementwise maximization operation on
the matrix set. We can consider all possible feature propaga-
tion by increasing K to oo to capture comprehensive graph
information. Actually, MGC operation can be regarded as one
special case of the generalized GDC operation, i.e.,

K
= Okij (Ak)i,-
k=1

1, k= argmaxX [(AY)}
Oij = Y
0, others.

(10)

Note that we have also constrained the weighting coefficients
by 6 that Z,fzo Or,ij = 1,Vi, j to ensure convergence and
control the scale.

B. Effectiveness Analysis

Here, we turn to analyze the effectiveness of MGC oper-
ation on alleviating over-squashing and over-smoothing with
theoretical or empirical evidence.

1) Alleviating Over-Squashing: By comparing GDC oper-
ation in (5) and MGC operation in (9), we can derive the
following corollary.

Corollary 1: Given any GDC operation S defined in (5)
with consideration of K’-hop neighbors (i.e., 6, = 0,
Vk > K'), we can specify an MGC operation with & = 6 and

any K > K’, in which
d(SX),; oMX);
OB sy <my =200y 50
0 0X

This corollary suggests that the effect of the interaction
between any pair nodes, including the distant nodes, in the
MGC operation can be larger than that in any GDC operations,
which indicates that MGC operation prefers to alleviate the
over-squashing problem better.

2) Avoiding Over-Smoothing: As for measuring the degree
of over-smoothing problem in MGC operation, it may be not
suitable to use the distance between M and Ao", such as (8),
because the maximization operation has changed both the
eigenvectors and eigenvalues of A, which means there is no
direct correspondence between the eigenvalues of M and Ak,
Actually, the rank of the GC operation is highly related to the
degree of the over-smoothing problem. In extreme cases, when
the rank of the GC operation is equal to 1, the over-smoothing
will occur where the output representations of all nodes are lin-
early correlated with each other. In the opposite sense, a larger
rank number indicates a lower degree of over-smoothing,
which the number of nondegenerated eigenvalues can measure.
Therefore, we turn to depict the spectrum (the distribution
of eigenvalues) and count the number of nondegenerated
eigenvalues (without vanishing to 0) of the MGC operation
to analyze the ability to avoid over-smoothing.

To be specific, taking Cora [53] and Cornell [44] dataset as
examples, Fig. 3(a) and (b) shows the spectrum of MGC oper-
ation M and powers of normalized adjacent matrix AKX with
different K values. We can observe that the eigenvalues degen-
eration would not occur in MGC operation even with quite
large K > 1000. More interestingly, we note that MGC oper-
ations with different K values all have a very similar spectrum

with A in the medium region. It indicates that MGC operation
and A preserve the similar structure information. In contrast,
Ax will degenerate to the over-smoothing stationarity rapidly
as K increases. In other words, the GDC-based models with
the linear combination of {A* Jioo as GC operation can only
benefit from one choice, alleviating over-smoothing or capture
long-distance information, not both, i.e., the tradeoff dilemma
discussed in Section IIT (more illustrations on other datasets
can be found in Supplementary material, where similar phe-
nomena have been witnessed).

Here, we also provide a synthetic experiments. Specifically,
we first generate 300 synthetic random graphs with different
sizes and sparsity by stochastic block model [19], which is a
popular generative model for random graphs. Then, as for M
and AX, we count the number of nondegenerate eigenvalues
A with A > €. Intuitively, the ratio of R(S) = C(S)/C(A) is
regarded as an index of the ability to avoid over-smoothing in
GC operation S. Based on the numerical results in Fig. 3(c),
we can find that MGC operation can always keep large R(M)
(slightly less than 1.0) even with large K, while R(AX)
vanishes to 0O rapidly. It leads the consistent conclusion with
the two examples in Fig. 3(a) and (b).

C. MGC Pipeline

Following SGC, S2GC, and APPNP, which all decouple the
feature propagation and transformation, we propose a simple
pipeline as follows:

Y = F((1 —a)o (FI(MX)) +ao (F2(X)))  (12)

where F,(-) is a trainable linear layer the activation function
o () is set as ReLLU, and the row Y in ¥ is the predicted label
distributions (before the softmax function) for the node v;.
Besides, following [83], the hyperparameter « € [0, 1) aims
to balance the self-information of node versus consecutive
neighbors. Actually, as Fig. 1 shows, our MGC pipeline can
be split into two main parts: 1) the fixed feature propagation
component X = MX, which requires no trainable weight
and can be done in the feature preprocessing stage and
2) the feature transformation component as the only part in
training stage, which aims to train a multiclass classifier on
the preprocessed features X and original features X.

D. Efficiency Analysis

Table I compares the complexity of MGC with various
GCNs. We find that MGC is equipped with high efficiency
in training and inference stages, where both the computation
and storage complexity are similar to that of SGC and S’GC
without storing the adjacent matrix and propagating features.
However, in the preprocessing stage, directly calculating MGC
operation M and conducting the feature propagation M X
are computationally inefficient and result in a dense n x n
size matrix M. Here, inspired by mini-batch-based GCNs
[10], [18], we propose to compute feature propagation M X
with b size of mini-batches to reduce the original storage
cost O(nf + n?) into O(nb + nf), as shown in Algorithm 1.
Nevertheless, the computation cost O(Kmn + n”f) is also
expensive, especially for large graphs. To solve this problem,
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Fig. 3. Emp1r1ca1 analysis of the over-smoothing problem in the MGC operation. (a) and (b) Spectrum of MGC operation M (K) and powers of normalized

adjacent matrix AX with different K values on Cora and Cornell datasets, where the eigenvalues )\; are ranked in decreasing order. (c) Change of the ratio
R(S) with € = 0.01 of M(K) and AX with varying K on 300 synthetic random graphs, where the solid line corresponds to the average value and the

transparent region is bounded by the 0.1 quantiles and 0.9 quantiles.

TABLE I
COMPUTATIONAL AND STORAGE COMPLEXITIES O(-)

Pre-processing

Training /Inference

Type Method Computation  Storage Computation Storage
GCN - - Knf?+ Kmf m+nf+ Kf>?
Coupled GAT - - Knf?+ Kmf m+nf + Kf>
GCNII - - Enf?+ Km+n)f m+nf+ Kf>
GraphSAGE - - k< nf? bENf+ K f°
Sampling FastGCN - - EKnf? bEK f + K f?
Cluster-GCN m m Kmf + Knf? bK f + K f?
SGC Kmf nf+m K'nf? bf + K'f?
GDC-based S?GC K(m+n)f nf+m K'nf? bf + K'f?
APPNP - - K'nf’+ K(m+n)f m+nf+K'f°
our MGC Kmn+n*f nf+nb K'nf? bf + K'f?
AMGC K(m+n)f nf+m K'nf? bf + K'f?

1

n, m, f, and k are the number of nodes, edges, feature dimensions (or hidden size), and sampled nodes respectively.

2 K and K’ denote the number of feature propagation and transformation steps, where K = K’ in coupled and
sampling GCNs, K’ = 1 in SGC and S2GC, and K’ = 2 in MGC.

3 b is the batch size.

Algorithm 1 Feature Propagation M X With Mini-Batches

Input: Adjacent matrix A, feature X, o, K, b;
Output: Node representation X ;

Computing A = (D + 1,)"*(A + L,)(D + I,)"'/2
fori =0to [(N/b)]—1 do

idxs=b-i:b-@I+1)
P = A[idxs];
M=0-P;
fork=1to K —1do
P =PA
M = max{M, P}
end for
X[idxs] = (1 — a)(MX) + aX
end for

inspired by GDC-based models, where the feature propagation
is conducted via iteration without computing the specific GC
operation, we propose to approximate M X softly by the
following AMGC, which can achieve linear complexity via
intermediate multiplications (A(. .. (AX *)..))

M'X =max,§=l{AkX+} —max,le{AkX_} (13)

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou).

where XT, X~ € R"™/ are the positive part and negative part
of X, respectively, i.e., X;]f = X;; if X;; > 0, else 0, and
X,; = —X;; if X;; <0, else 0. Note that AMGC may not be
tight approximation to MGC. However, we have

MX = maxf [A} X — maxf {AF} X, (14)

Indeed, AMGC approximates into MGC by moving X"
and X~ from the outside of maximization operation into the
inside, where AFX* can be computed with a linear complexity.
Intuitively, we can derive

(A°2), < (M'Z),, = MZ); VZ>0,ijk (15

which indicates that AMGC may achieve better approximation
than any GDC-based models, at least when X > 0. In partic-
ular, if X > 0, we even have the following inequation, where
M'X achieves a strict tight approximation to M X than any
GDC operation, i.e.,

IMX — M'X||
- Z(MX)U - (M'X),,
ij
< > (MX);; — (SX); = |IMX — SX|li.  (16)

ij

Downloaded on November 04,2024 at 03:50:43 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHEN et al.: HANDLING OVER-SMOOTHING AND OVER-SQUASHING IN GC WITH MAXIMIZATION OPERATION 7

TABLE I
STATISTICS OF THE DATASETS FOR THE EVALUATION ON EFFECTIVENESS

Dataset Class Node Edge Input Dim Train/Val/Test H(G) Assortative
Cora 7 2,708 5,429 1,433 140/500/1000 0.83 Yes
Citeseer 6 3,327 4,732 3,703 120/500/1000 0.72 Yes
Pubmed 3 19,717 44338 500 60/500/1000 0.79 Yes
Chameleon 4 2,277 36,101 2,325 10 folds 0.25 No
Cornell 5 183 295 1,703 10 folds 0.11 No
Texas 5 183 309 1,703 10 folds 0.06 No
Wisconsin 5 251 499 1,703 10 folds 0.16 No
Actor 5 7600 33544 931 10 folds 0.24 No

V. EXPERIMENTS

Here, we evaluate MGC against the state-of-the-art
GCN models on a wide variety of benchmark datasets. To be
specific, we would first explore the effectiveness of MGC from
the abilities in three aspects: capturing neighbor information,
avoiding the over-smoothing problem, and handling long-
distance dependency without the over-squashing problem.
Then, we further estimate the scalability of our methods
for larger graphs in both transductive and inductive settings.
Finally, we turn to discuss the efficiency of our models.

A. Evaluation on Effectiveness

1) Datasets and Assortativity: We leveraged eight
benchmark graph datasets for the node classification task to
evaluate the effectiveness of MGC, including three standard
citation graph benchmarks (Cora, Citeseer, and Pubmed),
four web networks (Chameleon [50], Cornell, Texas, and
Wisconsin [44]), and another subgraph of the knowledge
graph in the film industry [57] (Actor). We applied the
standard training/validation/test split for three citation graphs
and conducted tenfold cross validation following [44]. Table II
has summarized the statistic of those datasets. The detailed
dataset description is the following.

1) Cora, Citeseer, and Pubmed are citation network
benchmark datasets [53] for node classification, where
nodes and edges denote documents and citations, respec-
tively. Node features correspond to the bag-of-words
embedding, and node labels are the academic topics.

2) Chameleon [50], Cornell, Texas, and Wisconsin [44]
are web networks, where nodes and edges represent
web pages and hyperlinks, respectively. Node features
correspond to several informative nouns on the page.
Those pages are manually classified by semantic topic
or monthly traffic.

3) Actor is the actor-only induced subgraph of the knowl-
edge graph in the film industry [57]. Each node corre-
sponds to an actor, and the edge denotes co-occurrence
on the same Wikipedia page. Node features correspond
to some keywords with manual labels.

Actually, those datasets can be split into two categories:
assortative graphs, including Cora, Citeseer, and Pubmed, with
high node homophily index (i.e., neighbor nodes have the
same labels and vice versa), and the disassortative graphs,
including other five networks, with relative lower homophily
index (i.e., nodes of the same class are far apart from each

other). In particular, we follow [44] and define the homophily
index H(G) as follows:

1 v = Vv ! Nv
Ho = 3 e A

VI
where N, is the neighbors of the node v and y, is the label
of the node v.

Along this line, we can conduct node classification exper-
iments on assortative graphs and disassortative graphs to
evaluate the ability of GCNs to capture information from the
neighbor nodes and long-distance nodes, respectively.

2) Baselines: Various GCN models are involved as base-
lines, which can be grouped into five categories as follows.

1) Vanila GCN [29] and GAT [59] are the state-of-the-art

shallow models.

2) SGC [64], S*GC [83], and APPNP [30] are the GDC-

based models.

3) JKNet [68], GCNII [7], and GRAND [4] are GCN

variants for tackling over-smoothing.

4) Geom-GCN [44] and GCN + FA [1] are GCN variants

for tackling over-squashing problem.

5) DGI [60] and GIN [67] are selected as the representa-

tions of other state-of-the-art GCN variants.

3) Settings: As shown in (12), the network structure of
MGQC in the training stage is similar to a two-layer MLP. Here,
we also use the dropout strategy in the input M X and X with
dropout rate n; and the hidden layer with dropout rate 1, to
improve performance. Actually, the best hyperparameters are
selected using grid search, where each hyperparameter is itera-
tively tuned within a predefined range. Specifically, parameter
« is varied from 0.0 to 1.0 with a step size of 0.05. Dropout
rates n; and 1, are selected from [0, 0.05, 0.1, ..., 0.75]. The
hidden dimension of MLP layers is selected from a range of
powers of 2, ranging from 2 to 2'!. Similarly, the number of
GCN layers K is chosen from a range of powers of 2, ranging
from 2 to 2'°. We use Adam [28] as the optimizer. The learning
rate is selected from the range [1e—5, 1.0], with each interval
[le—i, le—(i — 1)] divided into smaller segments using a step
size of 0.5e—i, for i ranging from 5 to 1. Weight decay is
determined from the range [le—6, 1.0] U {0}, with a similar
division into smaller segments. We summarize the important
hyperparameters of MGC for different datasets in Table III.
(See Supplementary material for more parameter analysis.) In
particular, all our results are based on ten random runs.

4) Effect of Capturing Neighbor Information: We followed
the previous works [7], [29] and conducted experiments on the

a7)

veV
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TABLE III
HYPERPARAMETERS FOR MGC IN DIFFERENT DATASETS FOR THE EVALUATION ON EFFECTIVENESS

Dataset K o Learning Rate  Weight Decay Hidden Size  Dopout 771 Dopout 72
Cora 128 0.05 0.1 0.0003 32 04 04
Citeseer 8 0.2 0.05 0.004 128 0 0.55
Pubmed 32 0.05 0.02 0.0015 32 0.45 0.25
Chameleon 100 0 0.1 0.000001 64 0.5 0.2
Cornell 100 0.2 0.1 0.00002 256 0.3 0.4
Texas 100 0.2 0.1 0.000055 256 0.3 0.2
Wisconsin 100 0.7 0.1 0.00001 64 0.5 0.35
Actor 100 0.05 0.1 0.00001 64 0.2 0.2
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Fig. 4. Prediction accuracy on (a) Cora, (b) Citeseer, and (c) Pubmed datasets with different K values.

TABLE IV

PREDICTION ACCURACY OF DIFFERENT MODELS
ON ASSORTATIVE GRAPHS

GRAND-I for Cora, GRAND-nl-rw for Citeseer, and Pubmed.
In particular, on Citeseer, MGC is about 1.3% better than the
best baseline, i.e., GRAND. It is also worth noting that MGC

Method Cora Citeseer Pubmed achieves this result with K = 128. It indicates that the MGC
GCN 81.8£0.5 70.84+0.5 79.3+£0.7 model can hold the neighbor information effectively, which is
GAT 83.3+0.7  72.5+£0.7  79.0+0.3 important for prediction in assortative graphs, even including
NEUOOn o BN s oo

APPNP 833405 717406  80.14+0.2 5) Effect of Avoiding Over-Smoothing: Following [7], [22],
JK-Net 81.840.5 707407  78.8+0.7 and [83], we explored how the performance of MGC varies
GCNII 85.5+0.5  73.4+06  80.2+04 as the hyperparameter K increases on those three assor-
GCNII*  853+02  73.2+0.8  80.3+04 tative graphs, i.e., Cora, Citeseer, and Pubmed, where the
GRAND  847+06  73.6+03 810104 over-smoothing problems are often reported. To be specific,
DGI 82.5£0.7 71.6+0.7 78.440.7 . .
GIN 776411 661409  77.0+12 we stacked K GCN layers with both K feature propagation
MGC 85.6:03 745102 805403 steps and K feature transformation steps. Also, for MGC,

assortative graphs, where the neighbor information has a large
important effect on node labels. The average classification
accuracy of all models with the standard deviation on the
test nodes over ten ran